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An analytical description for the initial phases of collapse of a spherical or cylindri- 
cal shock wave in a perfect gas is given in the present paper. The shock wave is 
initiated by the instantaneous and uniform deposition of a finite quantity of 
energy per unit surface area at  a finite radius R,. For the initial shock motion 
where xs = (Rs- R,)/R, is small, analytical solutions are obtained by a power- 
series expansion of the dependent variables in xs. The classical self-similar solu- 
tion for a strong planar blast wave is recovered as the present zero-order solution. 
Non-similar effects arising from both finite shock strengths and the presence of a 
characteristic length R, are accounted for simultaneously in the present pertur- 
bation scheme. The analysis is carried out up to third order in xs. For very large 
values of the initiation energy where the shock wave remains strong throughout 
its collapse, it is found that the present perturbation solution can adequately 
describe a significant portion of the collapse processes. The solution indicates 
that the shock decays rather rapidly initially and later begins to accelerate as a 
result of the additional adiabatic compression of the shocked states due to flow- 
area convergence. However, for weak initiation where the energy released is 
small, the present perturbation solution is an asymptotic series and diverges 
very rapidly as the shock propagates away from the wall. The range of validity 
then is limited to very small values of 5. 

1. Introduction 
The motive for present analytical study of converging shock waves is the 

recent advances in quantitative experiments on implosion phenomena by Lee & 
Lee (1965) and Knystautas, Lee & Lee (1967). For converging shock waves gener- 
ated initially a t  some finite radius R,, there appears to be a lack of adequate 
analytical description of the implosion processes. For the final phases of the 
collapse, there exists the classical solution of Guderley (1942), Butler (1954) and 
Stanyukovich (1960). However, their self-similar solutions require the absence 
of a characteristic length and also that the shock front be of infinite strength 
(i.e. Ms-+co). Hence the similarity solution is applicable only in the immediate 
neighbourhood of the centre of convergence (i.e. RJR,+ 0), when both of these 
conditions can be realized in practice. Recently, attempts have been made by 
Lee (1966) and Welsh (1966) to extend the similarity solution to account for non- 
similar effects arising from finite shock strength. However, the validity of their 
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solutions is again confined to the vicinity of the centre of collapse since non- 
similar effects arising from the presence of a characteristic length R,, R,/Ro 
being finite, was not accounted for in their analyses. The method of Chester (1954), 
Chisnell(l955) and Whitham (1958) for the propagation of shock waves in non- 
uniform channels has been found to yield fairly good predictions for the motion 
of the converging shock front itself. However, adequate description of the flow 
structure cannot be obtained by this method. It is also doubtful if the Chester-- 
Chisnell-Whitham method can be used for describing the motion of converging 
shock waves under different initial conditions. For a complete description of the 
motion of imploding shock waves one must resort to a number of numerical 
schemes whereby the conservation equations of motion can be integrated numeri- 
cally (Payne 1957 and Brode 1955). These numerical schemes are extremely 
time consuming and are used only for particular cases of interest. 

The aim of the present work is to provide an analytical description for the 
initial phases of collapse of spherical and cylindrical shock waves generated in a 
chamber of finite size. The model assumes a shock wave to be initiated by the 
instantaneous and uniform deposition of finite quantity of energy per unit sur- 
face area of a spherical or cylindrical shell. Such a model simulates the experi- 
mental condition of initiation by the detonation of a thin spherical or cylindrical 
sheet of high explosives (Glass 1965), or by the electrical explosion of a cylindrical 
foil (Dennen & Wilson 1962). The propagation of converging shock waves gener- 
ated by other means such as arbitrary piston motion, will be considered in a 
subsequent paper. 

2. Formulation 
Consider a spherical or cylindrical chamber of radius R, containing a test gas 

at  initial pressure po  and initial density p,. At time t = 0 a finite quantity of 
energy E, or, for the cylindrical case E, per unit length is released instantaneously 
a t  R,, generating a strong shock wave. At subsequent times, the shock wave 
collapses toward the centre or the axis of symmetry. 

Neglecting viscous and heat transfer effects, and assuming a perfect gas with 
constant specific-heat ratio y, the conservation equations governing the adi- 
abatic motion of the shocked gas can be written as follows: 

conservation of mass 

conservation of momentum 

au a t 6  1 ap 
-+u-+-- = 0, at ar par 

conservation of energy 
-I ( i + U k )  f = 0, 

where j = 1 for cylindrical symmetry, 

= 2 for spherical symmetry. 
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The boundary conditions at the shock front r = Rs are given by the standard 
Rankine-Hugoniot relationships for a normal shock in a perfect gas as follows: 

where M, is the shock Mach number defined as 

2M = I ~ s s l l c o  = l&l/4(YPo/Po)* (2.7) 

The subscript 1 denotes conditions immediately behind the shock front while I?, 
and co are the shock velocity and the sound speed of the undisturbed medium, 
respectively. In  the present problem, it is more convenient to use a set of non- 
dimensional variables similar to that used in blast-wave studies, Rae & Kirchner 
(1963). The variables are given by 

where 

and 

Equations (2.1)-(2.3) transform to the following equations, respectively. 

(2.8) 

(2.9) 
(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

where the parameter 8 is defined as 

e = xsq*:, (2.17) 

and $, x, denote first and second derivatives of xs with respect to time t .  A more 
convenient form of the energy equation can be obtained by eliminating 9 from 
equations (2.14) and (2.16). Re-arranging the resultant equation one obtains 

(2.18) 

The region of flow governed by equations (2.14)-(2.18) is bounded by the shock 
front of 4 = 1 and by the chamber wall at 4 = 0. The shock originates at the 
chamber wall xJ = 0 and collapses to the centre at  xs = - 1. 

33-2 
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In  contrast to the classical solution for the final phases of collapse, the energy 
integral provides a useful relationship in the present pro.blem since the flow 
boundaries are finite (i.e. 1 > E 0). Conservation of the total energy at any 
instant of time yields the relationship 

(2.19) 

where the numerical constant k, is defined as 

Ic ,  = 2n for j  = 1 

Ic, = 47r for j  = 2 

(cylindrical symmetry), 

(spherical symmetry). 

The second integral on the right-hand side of equation (2.19) represents the initial 
internal energy of the medium. Evaluating this integral and expressing the 
resultant equation in terms of the previously defined dimensionless variables, 
one obtains 

Eo = p 0 1 e , R ~ + 3 k ~ ~ s [ [ I ( ~ s ) - ~ ~ { 1 -  (1  +~,)j+'}/{r(r- 1) (j+ l)~$:}], (2.20) 

where (2.21) 

If the intiation energy E, is large compared to the initial internal energy of the 
medium, the second term on the right-hand side of equation (2.20) can be neg- 
lected. However, in contrast to the classical strong blast wave problem similarity 
solutions cannot be obtained here even under this condition. The presence of 
the characteristic length R, results in the integral I(xJ being dependent on 
the shock position xs. From equation (2.20), it is seen that in the present prob- 
lem, departure from similarity arises from both time-dependent boundary con- 
ditions when the initial internal energy of the medium cannot be neglected as 
compared to Eo, and also from the presence of a characteristic length R,. 

h i  the subsequent analysis, it is more convenient to seek an appropriate 
characteristic time so that the time variable t can be made non-dimensional, 
and this characteristic time tf is defined by 

(2.22) 

tf can be interpreted as the order of magnitude of the total time of collapse. 

7 = t/t; (2.23) 

In the subsequent analysis, the non-dimensional time variable 7, where 

will be used. The shock velocity B5 or 8, now becomes 

Equations (2.14)-(2.18) remain unchanged except that k5 now represents differen- 
tiation with respect to 7. The energy integral (i.e. equation (2.20)) can be rewritten 

(2.24) 
as 

1 = z 5 k ~ ( j + 1 ) I ( ~ 5 ) - c f 2 { 1 - ( 1 + z 5 ) ~ + ~ ) / { y ( ~ -  l)), 
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where cj* is the characteristic sound speed defined as 

c;k2 = ~ t t ? ~ / R t .  (2.25) 

If the initiation energy is very large (i.e. Eo -+ a), then t? -+ 0, c f2+  0 and the 
shock wave remains strong throughout its collapse. For example, in a spherical 
implosion chamber of radius 3 cm containing air at 10 mm Hg initial pressure, 
an initiation energy of 10 joules gives a value of tz = 12.5 x sec and 
c t 2  = 0-0196. For hydrogen under identical conditions, tz  = 0.346 x sec, 
while c t 2  = 0.0199, approximately the same as that for air due to the higher 
sound speed in hydrogen. 

3. Analysis 
For the initial phases of the collapse when Izsl < 1, one may seek solutions 

to equations (2.14) to (2.18) by assuming the following power series for the de- 
pendent variables $, f and $. 

m 

n=O 

m I $(& X s )  = CI $("'(5) xr, 

An appropriate expansion for the shock velocity xs can readily be obtained by 
inspection from the energy integral given by equation (2.24). Since the left-hand 
side of equation (2.24) is finite, xi.", must be of the form 

From equation (3.2), one can readily determine the expansion for the parameter 
8 as 

where the coefficients B(O), O(l), O@), . . . are given by 

(3.4) 

i3(2) = F J G -  +F2,/Ft, (3.5) 

Ot3) = +{(F1/F0)3 - 3FlF2/F6 + 3F3/F0}, (3.6) 

=- -4, B(1) = I F / F  
2 1 0, 

Substituting the perturbation expressions given by equations (3.1)-( 3.6) into 
the conservation equations (equations (2.14), (2.15) and (2.18)) and into the 
energy integral (equation (24.4)), one obtains the following after equating 
coefficients of similar orders in zs. 

Zeroth order : 
($go) - 6) @OY + $(O' $(OY = 0, 

($(@ - 5) $(OY + f (OY/$(O' = - O(0) $'O', 

(3.7) 

(3.8) 
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(3.9) 
(3.10) 

(3.11) 

(3.12) 

(3.13) 

”’> 2 

(3.14) 
(3.15) 

where 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

where 

(3.21) 
Third order : 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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where 

1(3) = /lo &3f(3)/(r - 1) + *$(3) $(O)* + $$(I) ,$Ua + $to) #O) $(3) + $(O) ,$@) 

+ $41)$(0)$2) + @2)$(0)#1) +jE{f@)/(y - 1) + 4$42)$(0)* + $pJ)$ (1 )*  

+ ~ 0 ) ~ ( 0 ) $ ( 2 ) + $ 4 1 ) ~ ( 1 ) ~ ( O ) } + ~ ~ ( j -  1) p{f(l)/(y- 1) + ~pl)p*+ $4O)$(o)p}]  

(3.26) 
The boundary conditions to be satisfied by the zeroth-, first-, second- and third- 
order equations a t  the shock front = 1 can be determined by expanding the 
Rankine-Hugoniot relations. Substituting equation (3.2) into equations (2.4)- 
(2.6) and carrying out the expansions, one obtains for 

Zeroth order: 

First order : 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

Second order : 

p ( 1 )  = 2c,*Z(y+ l)/{(Y- 1)2F;}(P1+2Cj*2/y- I) ,  (3.32) 

$@)( 1) = 2 c p q { ( y  + l)FQ, (3.33) 

f (2)( 1)  = * (y  - 1 ) p (  l ) / Y .  (3.34) 

$(3)(1) = - 2~;2(7+ i)/{(y- I ) ~ F : }  [ { ~ , + 2 ~ 7 2 / ( 7 -  ~ ) } ~ - P ~ F ~ I ,  (3.35) 

p( 1) = +(Y - 1) 4(3)( 1 ) / ~ .  (3.37) 

Third order : 

+(3)(1) = - 2 c 3 { ( 7 +  1 ) ~ : )  ( F ; - F ~ F ~ ) ,  (3.36) 

The zeroth-order shock boundary conditions are simply those for an infinitely 
strong shock wave of limiting density ratio. The parameter cF2 appears in the 
first- and higher-order boundary conditions only. Hence for very large values 
of the initiation energy E,  where cF2 can be neglected, the first- and higher-order 
boundary conditions all become zero. The shock remains strong throughout its 
collapse under this condition. One should note that the determination of the 
boundary conditions for a higher-order solution requires the complete solution 
of the lower-order equations. For example, the first-order boundary conditions 
can only be evaluated after the zeroth-order solutionis obtained and Po determined 
from the zeroth-order energy integral (i.e. equation (3.10)). 

From the differential equations for the zeroth-order (i.e. equations (3.7)- 
(3.9)), its boundary conditions (i.e. equations (3.27) and (3.28)), and the value 
of @O) = - 4, one observes immediately that the solution will in fact be the 
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self-similar solution for strong planar blast waves. One would expect this result 
since the shock is initiated at  the wall surface at R, and for very short times 
after initiation, curvature effects are negligible and the flow is essentially planar. 

With the zeroth-order solution known, F,  can be evaluated from the energy in- 
tegral (i.e. equation (3.10) ), and the first-order boundary conditions can now be 
determined. With these as starting values at the shock 6 = 1, the differential 
equations for the first-order (i.e. equations (3.12)-(3.14)) can then be integrated 
numerically with a chosen value of @I). The criterion for determining the correct 
solution will be when the chosen value of 19(l) gives a solution that satisfies the 
condition of zero particle velocity at  the wall. An alternative criterion will be 
when the assumed value of O(l) coincides with the value obtained from the first- 
order energy integral. In the present study, rapid convergence is obtained using 
the regula-fabi method of iteration for O(l) based on the criterion of zero particle 
velocity at the wall (5 = 0, qW(0) = 0). The second criterion is also used to  check 
the value of the 6(l) obtained. The solutions for the second- and higher-orders are 
found in a similar manner. 

The shock trajectory can be obtained from the definition of the shock velocity 

ks = dx,/dr, 

or 7 = jOX' dx,/X,. (3.38) 

Substituting the expansion for xz in terms of x, into the above equation, one ob- 
tains 

dx,J((F,/x,+ F , + P , x , + F , x ~ +  . . .)}-l, (3.39) 

where the negative square root of x.", is taken since the shock velocity is directed 
towards the centre of symmetry. 

Integrating equation (3.38) up to third order in x,, the resultant expression 
for the shock trajectory becomes 

7 = B , I ~ , : , I ~ ( l + B 1 ~ , + B 2 ~ ~ + B 3 ~ ~ +  . . .), (3.40) 

where Bo = ~ ( ~ J I F I o ~  

B1= -&Fl/FO, 

B2 = $($F2,/Fg-&F2/F,), 

B3 = - 4(&(FJF0)3- $ FlF2/F: + J F 3 / F o ) .  

4. Results 
For the results presented in this paper, a value of y is 1.4 for both the spherical 

and the cylindrical cases only. The planar casej = 0 is not of interest since no 
area convergence and shock amplification exist and it is simply the ordinary 
planar blast problem. 

From equations (3.27) to (3.37) one notes that the nth-order boundary condi- 
tions are of the form of an nth-order polynomial in the parameter cF2. Hence the 
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perturbation coefficients (i.e. F,, tW, I(,), B,, etc.) can be written in the following 
form: 

X ,  = Xno+X,lCi*2+Xn2Ci*4f ... = 5 X , i C f %  (4 .1 )  
i = O  

where x denotes any one of the perturbation coefficients. Numerical results for 
the xn are given in table 1 for the spherical case and table 2 for the cylindrical 
case. For example, from table 1 the parameter 8 can be written as 

8 = - 0.5 + zs( - 0.61284 - 3.8972~72)  

+ ~ i ( 0 . 5 0 0 1 6  - 7.64711 4 8 . 3 6 8 ~ 7 ~ )  

+ ~ ; ( - 0 * 4 6 9 8 2 - 2 . 6 7 9 6 c j * ~ -  1 3 1 * 7 4 ~ : ~ - 6 8 7 * 3 9 ~ j * ~ ) +  .... (4 .2)  

i = o  
Foi -0,27499 

x = F p*t 0.33705 la: 0.33910 
- 0.34409 

- 0.5 
-0.61284 

0.50016 
- 0.46982 

1.27131 
0.36770 

0.013903 
- 0.026698 

- 1.21217 

- 0.30423 
- 0.008565 

i = l  

2.14334 
- 0.52417 

0.59577 

- 

- 
- 3.89715 
- 7.64711 
- 2.67964 

2.33829 
2.66223 
0.99789 
- 

- 2.95425 
- 6.39679 
- 3.01314 

i = 2  
- 
- 
4.947 7 1 
1.69620 

- 
- 48.3680 
- 131.7374 

- 

13.61909 
26.09604 

- 
- 44.8362 
- 133.3906 

i = 3  
- 
- 
- 

44.0491 
- 
- 
- 

- 687-3912 

- 
- 596.793 

TABLE 1. Perturbation coefficients for a spherical implosion 

i = o  
- 0.41248 

0.25278 

0.14780 
- 0.18423 

- 0.5 
- 0.30642 

0.25886 
- 0.24195 

1.03802 
0.18385 

0.01526 
- 0.03535 

- 1.21217 
- 0.74286 

0.08616 
- 0.04972 

i = l  

2.14334 
- 0.26209 

0.24607 

- 

- 2.59810 
- 2.54904 

0.24325 

1.55886 
0.88741 
0.031717 

- 

- 
- 1.96950 
-2.13226 

0.05831 

i = 2  

- 
3.29847 
0.56540 

- 
- 21.4969 
- 29.2750 

- 
6.05293 
5.79912 

- 
- 19.9272 
- 29.6423 

i = 3  

- 
19.5774 
- 
- 
- 

- 203.671 
- 
- 
- 
32.9130 

- 
- 176.827 

TABLE 2. Perturbation coefficients for a cylindrical implosion 
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FIGURE 2. Shock decay coefficient for varying initiation energy 
(cylindrical implosion). 
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From tables 1 and 2 one notes that for cF2 = 0, all the higher-order corrections 
have the same sign since x, is negative, which indicates that for very large initia- 
tion energy the present perturbation expansion are simple Taylor series about 
the wall x, = 0. However, for finite values of cf2 ,  the higher-order perturbation 
coefficients have alternating signs and increasing magnitudes, which are charac- 
teristics of an asymptotic type of expansion similar to the solution of Sakurai 
(1954) for blast waves with counter-pressure effects. 

The variation of 8 with the shock location xs for the spherical and cylindrical 
cases are shown in figures 1 and 2, respectively, for two values of cf2 (c;, = 0 
and 0.5). Also plotted in these figures are the corrections for the different orders 
to indicate the region of validity and the accuracy of the present third-order 
solution. The asymptotic nature of the solution for finite values of c;2 is clearly 
demonstrated by the set of curves for cF2 = 0.5. For cF2 = 0-0, one notes that the 
present third-order solution yields a fairly good description of the implosion 
processes for more than 50% of the shock travel. From the definition of the 
parameter 8 (i.e. equation (2.17)), it can be seen that its sign, positive or negative, 
denotes whether the shock is accelerating or decelerating, respectively. Figures 
1 and 2 indicate that the shock initially decelerates as the initiation energy is 
being distributed over an increasing mass of gas engulfed by the shock. However, 
as the shock collapses to smaller radii, the amplification mechanism of flow 
convergence begins to play an increasingly important role and the shock acceler- 
ates. Comparing figures 1 and 2, one notes that the amplification mechanism 
is stronger for the spherical case than for the cylindrical case. For the spherical 
case, 8 changes sign at  about 50% of the shock travel while in the cylindrical 
case the shock only begins to accelerate after about 75 % of its total travel. 

The present solution, even for $2 = 0, is not valid in the vicinity of the centre 
of convergence, i.e. x,-+ - 1-0. From the asymptotic solution of Guderley (1942) 
one notes that R & k ~ - + a  finite negative number as R,+O. In the present 
analysis 8 can be written as 

8 -  xs w.9 

l+x, kz * 
(4.3) 

From the above equation one notes that 8 + + co as x, -+ - 1. 
The shock trajectories for a range of cF2 for the spherical case are shown in 

figure 3. For = 0, which corresponds to an infinitely strong collapsing shock 
wave, one notes from the relative magnitude of the higher-order corrections 
that the present third-order solution probably gives a fairly accurate description 
of the shock motion for the majority of its collapse. A change in curvature of the 
shock trajectory can be observed, and the location of the point of inflexion 
corresponds to the same shock position when 8 = 0 in figure 1. For finite values 
of c;,, the range of validity of the present third-order trajectories decreases. 
All trajectories coalesce near the wall (x, = 0) since the shock is strong initially 
(i.e. N,~+co),  and flow-convergence effects are small at  large shock radii for all 
radius of cF2. The shock motion is then identical to a strong planar blast wave 
(i.e. R, - b). 

A comparison of the shock trajectories for strong planar, cylindrical and 
spherical implosions (i.e. cf2 = 0) is illustrated in figure 4. To obtain a proper 
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time scale for the comparison, the characteristic time t:, function of the geometry 
j, must be referenced to that of the planar case (i.e. t t )  in order to have the same 
initiation energy density per unit area for all the three cases. From equation 
(2.22) one notes that for the same energy density, tg/tg = I/ J3 and t f / t$  = I/ J2. 
In  figure 4 the planar-blast trajectory is simply that from the similarity 

FIGURE 3. Shock trajectories for spherical implosions at  different initiation energies. 
Valuesofcf*:-, 0;--. .-, O - l ; - - - ,  06Zeroth-,first-, second- and third-order solutions 
are shown. 

solution where R, N t3. In  the neighbourhood of the wall xs = 0, all the trajectories 
coincide with the planar one indicating that area contraction effects are small 
initially. That the collapse is stronger for spherical waves than for the cylindrical 
waves is clearly illustrated. 

The distributions of the particle velocity q5 and the pressure f behind a collaps- 
ing strong spherical shock wave are shown in figures 5 and 6, respectively. 
The distribution for a strong planar blast wave (which is the zeroth-order solution 
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in the present analysis) is also plotted at R,/Ro = 0-1 and 0.7 to indicate the 
effect of area convergence. All the particle velocity profiles decrease monotonic- 
ally from its value of 0.8333 at the shock front to a constant value a t  the wall. 

1 0  

09 

0 8  

07 

0 6  

0 5  . u 

0 4  

0 3  

0 2  

0 1  

\ j = O  

(R, -R,)IR, 

FIQURE 4. Comparison of shock trajectories for strong planar, j = 0, cylindrical, j = 1, 
and spherical implosions, j = 2, (c ;~  = 0). 

The additional adiabatic compression of the shocked states due to area conver- 
gence as the shock collapses towards the centre is illustrated by the build-up 
of pressure in the flow behind the front. A more pronounced indication of this 
adiabatic compression of the flow can be seen from the density distributions shown 
in figure 7. Towards the end of the collapse, one notes that the density increases 
further behind the shock front to a value greater than six times the initial density 
that is obtained across a strong shock in a perfect gas with y = 1.4. For the 
cylindrical case, flow compression due to area convergence is less intense, One 
notes from the density profiles for strong cylindrical implosion shown in figure 
8 that the density peak is not observed until the shock wave is very close to the 
centre of collapse-the region where the present perturbation solution becomes 
inaccurate. The further increase in pressure and density behind the shock near 
the centre of collapse is in qualitative agreement with the similarity solution of 
Guderley (1942), Butler (1954) and Lee (1966). 
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5. Conclusions 
The present analysis provides a fairly accurate and complete description of the 

initial phases of collapse of impulsively generated implosions. For strong collapse 
where the initiation blast energy is large (i.e. cF2+ O),  the present perturbation 
scheme is simply a Taylor series expansion about the chamber wall xs = 0, 
and the radius of convergence covers a significant portion of the total collapse. 
Counter-pressure effects become dominant for weak initiation, and the validity 
of the present second-order solution is confined to the neighbourhood of the wall 
whereby lxsl < 1. A description of the complete collapse requires a numerical 
integration scheme. However, the present analysis provides an excellent method 
for determining the appropriate starting conditions for the numerical solution. 
The present solution is directly applicable to steady internal axisymmetrical 
hypersonic flow in a straight cylindrical duct. The perturbation scheme used has 
been extended to other methods of initiation of the shock wave such as by a 
collapsing piston which will be analogous to other hypersonic inlet geornetrics. 
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